Edit on GitHub

Semantic Diff for SQL

by Iaroslav Zeigerman

Motivation

Software is constantly changing and evolving, and identifying what has changed and reviewing those changes is an integral part of the development process. SQL code is no exception to this.

Text-based diff tools such as git diff, when applied to a code base, have certain limitations. First, they can only detect insertions and deletions, not movements or updates of individual pieces of code. Second, such tools can only detect changes between lines of text, which is too coarse for something as granular and detailed as source code. Additionally, the outcome of such a diff is dependent on the underlying code formatting, and yields different results if the formatting should change.

Consider the following diff generated by Git:

Git diff output

Semantically the query hasn’t changed. The two arguments b and c have been swapped (moved), posing no impact on the output of the query. Yet Git replaced the whole affected expression alongside a bulk of unrelated elements.

The alternative to text-based diffing is to compare Abstract Syntax Trees (AST) instead. The main advantage of ASTs are that they are a direct product of code parsing, which represents the underlying code structure at any desired level of granularity. Comparing ASTs may yield extremely precise diffs; changes such as code movements and updates can also be detected. Even more importantly, this approach facilitates additional use cases beyond eyeballing two versions of source code side by side.

The use cases I had in mind for SQL when I decided to embark on this journey of semantic diffing were the following:

  • Query similarity score. Identifying which parts the two queries have in common to automatically suggest opportunities for consolidation, creation of intermediate/staging tables, and so on.
  • Differentiating between cosmetic / structural changes and functional ones. For example when a nested query is refactored into a common table expression (CTE), this kind of change doesn’t have any functional impact on either a query or its outcome.
  • Automatic suggestions about the need to retroactively backfill data. This is especially important for pipelines that populate very large tables for which restatement is a runtime-intensive procedure. The ability to discern between simple code movements and actual modifications can help assess the impact of a change and make suggestions accordingly.

The implementation discussed in this post is now a part of the SQLGlot library. You can find a complete source code in the diff.py module. The choice of SQLglot was an obvious one due to its simple but powerful API, lack of external dependencies and, more importantly, extensive list of supported SQL dialects.

The Search for a Solution

When it comes to any diffing tool (not just a semantic one), the primary challenge is to match as many elements of compared entities as possible. Once such a set of matching elements is available, deriving a sequence of changes becomes an easy task.

If our elements have unique identifiers associated with them (for example, an element’s ID in DOM), the matching problem is trivial. However, the SQL syntax trees that we are comparing have neither unique keys nor object identifiers that can be used for the purposes of matching. So, how do we suppose to find pairs of nodes that are related?

To better illustrate the problem, consider comparing the following SQL expressions: SELECT a + b + c, d, e and SELECT a - b + c, e, f. Matching individual nodes from respective syntax trees can be visualized as follows:

Figure 1: Example of node matching for two SQL expression trees Figure 1: Example of node matching for two SQL expression trees.

By looking at the figure of node matching for two SQL expression trees above, we conclude that the following changes should be captured by our solution:

  • Inserted nodes: Sub and f. These are the nodes from the target AST which do not have a matching node in the source AST.
  • Removed nodes: Add and d. These are the nodes from the source AST which do not have a counterpart in the target AST.
  • Remaining nodes must be identified as unchanged.

It should be clear at this point that if we manage to match nodes in the source tree with their counterparts in the target tree, then computing the diff becomes a trivial matter.

Naïve Brute-Force

The naïve solution would be to try all different permutations of node pair combinations, and see which set of pairs performs the best based on some type of heuristics. The runtime cost of such a solution quickly reaches the escape velocity; if both trees had only 10 nodes each, the number of such sets would approximately be 10! ^ 2 = 3.6M ^ 2 ~= 13 * 10^12. This is a very bad case of factorial complexity (to be precise, it’s actually much worse - O(n! ^ 2) - but I couldn’t come up with a name for it), so there is little need to explore this approach any further.

Myers Algorithm

After the naïve approach was proven to be infeasible, the next question I asked myself was “how does git diff work?”. This question led me to discover the Myers diff algorithm [1]. This algorithm has been designed to compare sequences of strings. At its core, it’s looking for the shortest path on a graph of possible edits that transform the first sequence into the second one, while heavily rewarding those paths that lead to longest subsequences of unchanged elements. There’s a lot of material out there describing this algorithm in greater detail. I found James Coglan’s series of blog posts to be the most comprehensive.

Therefore, I had this “brilliant” (actually not) idea to transform trees into sequences by traversing them in topological order, and then applying the Myers algorithm on resulting sequences while using a custom heuristics when checking the equality of two nodes. Unsurprisingly, comparing sequences of strings is quite different from comparing hierarchical tree structures, and by flattening trees into sequences, we lose a lot of relevant context. This resulted in a terrible performance of this algorithm on ASTs. It often matched completely unrelated nodes, even when the two trees were mostly the same, and produced extremely inaccurate lists of changes overall. After playing around with it a little and tweaking my equality heuristics to improve accuracy, I ultimately scrapped the whole implementation and went back to the drawing board.

Change Distiller

The algorithm I settled on at the end was Change Distiller, created by Fluri et al. [2], which in turn is an improvement over the core idea described by Chawathe et al. [3].

The algorithm consists of two high-level steps:

  1. Finding appropriate matchings between pairs of nodes that are part of compared ASTs. Identifying what is meant by “appropriate” matching is also a part of this step.
  2. Generating the so-called “edit script” from the matching set built in the 1st step. The edit script is a sequence of edit operations (for example, insert, remove, update, etc.) on individual tree nodes, such that when applied as transformations on the source AST, it eventually becomes the target AST. In general, the shorter the sequence, the better. The length of the edit script can be used to compare the performance of different algorithms, though this is not the only metric that matters.

The rest of this section is dedicated to the Python implementation of the steps above using the AST implementation provided by the SQLGlot library.

Building the Matching Set

Matching Leaves

We begin composing the matching set by matching the leaf nodes. Leaf nodes are the nodes that do not have any children nodes (such as literals, identifiers, etc.). In order to match them, we gather all the leaf nodes from the source tree and generate a cartesian product with all the leaves from the target tree, while comparing pairs created this way and assigning them a similarity score. During this stage, we also exclude pairs that don’t pass basic matching criteria. Then, we pick pairs that scored the highest while making sure that each node is matched no more than once.

Using the example provided at the beginning of the post, the process of building an initial set of candidate matchings can be seen on Figure 2.