Dialects
While there is a SQL standard, most SQL engines support a variation of that standard. This makes it difficult to write portable SQL code. SQLGlot bridges all the different variations, called "dialects", with an extensible SQL transpilation framework.
The base sqlglot.dialects.dialect.Dialect
class implements a generic dialect that aims to be as universal as possible.
Each SQL variation has its own Dialect
subclass, extending the corresponding Tokenizer
, Parser
and Generator
classes as needed.
Implementing a custom Dialect
Creating a new SQL dialect may seem complicated at first, but it is actually quite simple in SQLGlot:
from sqlglot import exp
from sqlglot.dialects.dialect import Dialect
from sqlglot.generator import Generator
from sqlglot.tokens import Tokenizer, TokenType
class Custom(Dialect):
class Tokenizer(Tokenizer):
QUOTES = ["'", '"'] # Strings can be delimited by either single or double quotes
IDENTIFIERS = ["`"] # Identifiers can be delimited by backticks
# Associates certain meaningful words with tokens that capture their intent
KEYWORDS = {
**Tokenizer.KEYWORDS,
"INT64": TokenType.BIGINT,
"FLOAT64": TokenType.DOUBLE,
}
class Generator(Generator):
# Specifies how AST nodes, i.e. subclasses of exp.Expression, should be converted into SQL
TRANSFORMS = {
exp.Array: lambda self, e: f"[{self.expressions(e)}]",
}
# Specifies how AST nodes representing data types should be converted into SQL
TYPE_MAPPING = {
exp.DataType.Type.TINYINT: "INT64",
exp.DataType.Type.SMALLINT: "INT64",
exp.DataType.Type.INT: "INT64",
exp.DataType.Type.BIGINT: "INT64",
exp.DataType.Type.DECIMAL: "NUMERIC",
exp.DataType.Type.FLOAT: "FLOAT64",
exp.DataType.Type.DOUBLE: "FLOAT64",
exp.DataType.Type.BOOLEAN: "BOOL",
exp.DataType.Type.TEXT: "STRING",
}
The above example demonstrates how certain parts of the base Dialect
class can be overridden to match a different
specification. Even though it is a fairly realistic starting point, we strongly encourage the reader to study existing
dialect implementations in order to understand how their various components can be modified, depending on the use-case.
1# ruff: noqa: F401 2""" 3## Dialects 4 5While there is a SQL standard, most SQL engines support a variation of that standard. This makes it difficult 6to write portable SQL code. SQLGlot bridges all the different variations, called "dialects", with an extensible 7SQL transpilation framework. 8 9The base `sqlglot.dialects.dialect.Dialect` class implements a generic dialect that aims to be as universal as possible. 10 11Each SQL variation has its own `Dialect` subclass, extending the corresponding `Tokenizer`, `Parser` and `Generator` 12classes as needed. 13 14### Implementing a custom Dialect 15 16Creating a new SQL dialect may seem complicated at first, but it is actually quite simple in SQLGlot: 17 18```python 19from sqlglot import exp 20from sqlglot.dialects.dialect import Dialect 21from sqlglot.generator import Generator 22from sqlglot.tokens import Tokenizer, TokenType 23 24 25class Custom(Dialect): 26 class Tokenizer(Tokenizer): 27 QUOTES = ["'", '"'] # Strings can be delimited by either single or double quotes 28 IDENTIFIERS = ["`"] # Identifiers can be delimited by backticks 29 30 # Associates certain meaningful words with tokens that capture their intent 31 KEYWORDS = { 32 **Tokenizer.KEYWORDS, 33 "INT64": TokenType.BIGINT, 34 "FLOAT64": TokenType.DOUBLE, 35 } 36 37 class Generator(Generator): 38 # Specifies how AST nodes, i.e. subclasses of exp.Expression, should be converted into SQL 39 TRANSFORMS = { 40 exp.Array: lambda self, e: f"[{self.expressions(e)}]", 41 } 42 43 # Specifies how AST nodes representing data types should be converted into SQL 44 TYPE_MAPPING = { 45 exp.DataType.Type.TINYINT: "INT64", 46 exp.DataType.Type.SMALLINT: "INT64", 47 exp.DataType.Type.INT: "INT64", 48 exp.DataType.Type.BIGINT: "INT64", 49 exp.DataType.Type.DECIMAL: "NUMERIC", 50 exp.DataType.Type.FLOAT: "FLOAT64", 51 exp.DataType.Type.DOUBLE: "FLOAT64", 52 exp.DataType.Type.BOOLEAN: "BOOL", 53 exp.DataType.Type.TEXT: "STRING", 54 } 55``` 56 57The above example demonstrates how certain parts of the base `Dialect` class can be overridden to match a different 58specification. Even though it is a fairly realistic starting point, we strongly encourage the reader to study existing 59dialect implementations in order to understand how their various components can be modified, depending on the use-case. 60 61---- 62""" 63 64from sqlglot.dialects.athena import Athena 65from sqlglot.dialects.bigquery import BigQuery 66from sqlglot.dialects.clickhouse import ClickHouse 67from sqlglot.dialects.databricks import Databricks 68from sqlglot.dialects.dialect import Dialect, Dialects 69from sqlglot.dialects.doris import Doris 70from sqlglot.dialects.drill import Drill 71from sqlglot.dialects.druid import Druid 72from sqlglot.dialects.duckdb import DuckDB 73from sqlglot.dialects.hive import Hive 74from sqlglot.dialects.materialize import Materialize 75from sqlglot.dialects.mysql import MySQL 76from sqlglot.dialects.oracle import Oracle 77from sqlglot.dialects.postgres import Postgres 78from sqlglot.dialects.presto import Presto 79from sqlglot.dialects.prql import PRQL 80from sqlglot.dialects.redshift import Redshift 81from sqlglot.dialects.risingwave import RisingWave 82from sqlglot.dialects.snowflake import Snowflake 83from sqlglot.dialects.spark import Spark 84from sqlglot.dialects.spark2 import Spark2 85from sqlglot.dialects.sqlite import SQLite 86from sqlglot.dialects.starrocks import StarRocks 87from sqlglot.dialects.tableau import Tableau 88from sqlglot.dialects.teradata import Teradata 89from sqlglot.dialects.trino import Trino 90from sqlglot.dialects.tsql import TSQL