sqlglot.dialects.fabric
1from __future__ import annotations 2 3 4from sqlglot import exp 5from sqlglot.dialects.dialect import NormalizationStrategy 6from sqlglot.dialects.tsql import TSQL 7from sqlglot.tokens import TokenType 8 9 10def _cap_data_type_precision(expression: exp.DataType, max_precision: int = 6) -> exp.DataType: 11 """ 12 Cap the precision of to a maximum of `max_precision` digits. 13 If no precision is specified, default to `max_precision`. 14 """ 15 16 precision_param = expression.find(exp.DataTypeParam) 17 18 if precision_param and precision_param.this.is_int: 19 current_precision = precision_param.this.to_py() 20 target_precision = min(current_precision, max_precision) 21 else: 22 target_precision = max_precision 23 24 return exp.DataType( 25 this=expression.this, 26 expressions=[exp.DataTypeParam(this=exp.Literal.number(target_precision))], 27 ) 28 29 30class Fabric(TSQL): 31 """ 32 Microsoft Fabric Data Warehouse dialect that inherits from T-SQL. 33 34 Microsoft Fabric is a cloud-based analytics platform that provides a unified 35 data warehouse experience. While it shares much of T-SQL's syntax, it has 36 specific differences and limitations that this dialect addresses. 37 38 Key differences from T-SQL: 39 - Case-sensitive identifiers (unlike T-SQL which is case-insensitive) 40 - Limited data type support with mappings to supported alternatives 41 - Temporal types (DATETIME2, DATETIMEOFFSET, TIME) limited to 6 digits precision 42 - Certain legacy types (MONEY, SMALLMONEY, etc.) are not supported 43 - Unicode types (NCHAR, NVARCHAR) are mapped to non-unicode equivalents 44 45 References: 46 - Data Types: https://learn.microsoft.com/en-us/fabric/data-warehouse/data-types 47 - T-SQL Surface Area: https://learn.microsoft.com/en-us/fabric/data-warehouse/tsql-surface-area 48 """ 49 50 # Fabric is case-sensitive unlike T-SQL which is case-insensitive 51 NORMALIZATION_STRATEGY = NormalizationStrategy.CASE_SENSITIVE 52 53 class Tokenizer(TSQL.Tokenizer): 54 # Override T-SQL tokenizer to handle TIMESTAMP differently 55 # In T-SQL, TIMESTAMP is a synonym for ROWVERSION, but in Fabric we want it to be a datetime type 56 # Also add UTINYINT keyword mapping since T-SQL doesn't have it 57 KEYWORDS = { 58 **TSQL.Tokenizer.KEYWORDS, 59 "TIMESTAMP": TokenType.TIMESTAMP, 60 "UTINYINT": TokenType.UTINYINT, 61 } 62 63 class Generator(TSQL.Generator): 64 # Fabric-specific type mappings - override T-SQL types that aren't supported 65 # Reference: https://learn.microsoft.com/en-us/fabric/data-warehouse/data-types 66 TYPE_MAPPING = { 67 **TSQL.Generator.TYPE_MAPPING, 68 exp.DataType.Type.DATETIME: "DATETIME2", 69 exp.DataType.Type.DECIMAL: "DECIMAL", 70 exp.DataType.Type.IMAGE: "VARBINARY", 71 exp.DataType.Type.INT: "INT", 72 exp.DataType.Type.JSON: "VARCHAR", 73 exp.DataType.Type.MONEY: "DECIMAL", 74 exp.DataType.Type.NCHAR: "CHAR", 75 exp.DataType.Type.NVARCHAR: "VARCHAR", 76 exp.DataType.Type.ROWVERSION: "ROWVERSION", 77 exp.DataType.Type.SMALLDATETIME: "DATETIME2", 78 exp.DataType.Type.SMALLMONEY: "DECIMAL", 79 exp.DataType.Type.TIMESTAMP: "DATETIME2", 80 exp.DataType.Type.TIMESTAMPNTZ: "DATETIME2", 81 exp.DataType.Type.TIMESTAMPTZ: "DATETIME2", 82 exp.DataType.Type.TINYINT: "SMALLINT", 83 exp.DataType.Type.UTINYINT: "SMALLINT", 84 exp.DataType.Type.UUID: "VARBINARY(MAX)", 85 exp.DataType.Type.XML: "VARCHAR", 86 } 87 88 def datatype_sql(self, expression: exp.DataType) -> str: 89 # Check if this is a temporal type that needs precision handling. Fabric limits temporal 90 # types to max 6 digits precision. When no precision is specified, we default to 6 digits. 91 if ( 92 expression.is_type(*exp.DataType.TEMPORAL_TYPES) 93 and expression.this != exp.DataType.Type.DATE 94 ): 95 # Create a new expression with the capped precision 96 expression = _cap_data_type_precision(expression) 97 98 return super().datatype_sql(expression) 99 100 def cast_sql(self, expression: exp.Cast, safe_prefix: str | None = None) -> str: 101 # Cast to DATETIMEOFFSET if inside an AT TIME ZONE expression 102 # https://learn.microsoft.com/en-us/sql/t-sql/data-types/datetimeoffset-transact-sql#microsoft-fabric-support 103 if expression.is_type(exp.DataType.Type.TIMESTAMPTZ): 104 at_time_zone = expression.find_ancestor(exp.AtTimeZone, exp.Select) 105 106 # Return normal cast, if the expression is not in an AT TIME ZONE context 107 if not isinstance(at_time_zone, exp.AtTimeZone): 108 return super().cast_sql(expression, safe_prefix) 109 110 # Get the precision from the original TIMESTAMPTZ cast and cap it to 6 111 capped_data_type = _cap_data_type_precision(expression.to, max_precision=6) 112 precision = capped_data_type.find(exp.DataTypeParam) 113 precision_value = ( 114 precision.this.to_py() if precision and precision.this.is_int else 6 115 ) 116 117 # Do the cast explicitly to bypass sqlglot's default handling 118 datetimeoffset = f"CAST({expression.this} AS DATETIMEOFFSET({precision_value}))" 119 120 return self.sql(datetimeoffset) 121 122 return super().cast_sql(expression, safe_prefix) 123 124 def attimezone_sql(self, expression: exp.AtTimeZone) -> str: 125 # Wrap the AT TIME ZONE expression in a cast to DATETIME2 if it contains a TIMESTAMPTZ 126 ## https://learn.microsoft.com/en-us/sql/t-sql/data-types/datetimeoffset-transact-sql#microsoft-fabric-support 127 timestamptz_cast = expression.find(exp.Cast) 128 if timestamptz_cast and timestamptz_cast.to.is_type(exp.DataType.Type.TIMESTAMPTZ): 129 # Get the precision from the original TIMESTAMPTZ cast and cap it to 6 130 data_type = timestamptz_cast.to 131 capped_data_type = _cap_data_type_precision(data_type, max_precision=6) 132 precision_param = capped_data_type.find(exp.DataTypeParam) 133 precision = precision_param.this.to_py() if precision_param else 6 134 135 # Generate the AT TIME ZONE expression (which will handle the inner cast conversion) 136 at_time_zone_sql = super().attimezone_sql(expression) 137 138 # Wrap it in an outer cast to DATETIME2 139 return f"CAST({at_time_zone_sql} AS DATETIME2({precision}))" 140 141 return super().attimezone_sql(expression) 142 143 def unixtotime_sql(self, expression: exp.UnixToTime) -> str: 144 scale = expression.args.get("scale") 145 timestamp = expression.this 146 147 if scale not in (None, exp.UnixToTime.SECONDS): 148 self.unsupported(f"UnixToTime scale {scale} is not supported by Fabric") 149 return "" 150 151 # Convert unix timestamp (seconds) to microseconds and round to avoid decimals 152 microseconds = timestamp * exp.Literal.number("1e6") 153 rounded = exp.func("round", microseconds, 0) 154 rounded_ms_as_bigint = exp.cast(rounded, exp.DataType.Type.BIGINT) 155 156 # Create the base datetime as '1970-01-01' cast to DATETIME2(6) 157 epoch_start = exp.cast("'1970-01-01'", "datetime2(6)", dialect="fabric") 158 159 dateadd = exp.DateAdd( 160 this=epoch_start, 161 expression=rounded_ms_as_bigint, 162 unit=exp.Literal.string("MICROSECONDS"), 163 ) 164 return self.sql(dateadd)
31class Fabric(TSQL): 32 """ 33 Microsoft Fabric Data Warehouse dialect that inherits from T-SQL. 34 35 Microsoft Fabric is a cloud-based analytics platform that provides a unified 36 data warehouse experience. While it shares much of T-SQL's syntax, it has 37 specific differences and limitations that this dialect addresses. 38 39 Key differences from T-SQL: 40 - Case-sensitive identifiers (unlike T-SQL which is case-insensitive) 41 - Limited data type support with mappings to supported alternatives 42 - Temporal types (DATETIME2, DATETIMEOFFSET, TIME) limited to 6 digits precision 43 - Certain legacy types (MONEY, SMALLMONEY, etc.) are not supported 44 - Unicode types (NCHAR, NVARCHAR) are mapped to non-unicode equivalents 45 46 References: 47 - Data Types: https://learn.microsoft.com/en-us/fabric/data-warehouse/data-types 48 - T-SQL Surface Area: https://learn.microsoft.com/en-us/fabric/data-warehouse/tsql-surface-area 49 """ 50 51 # Fabric is case-sensitive unlike T-SQL which is case-insensitive 52 NORMALIZATION_STRATEGY = NormalizationStrategy.CASE_SENSITIVE 53 54 class Tokenizer(TSQL.Tokenizer): 55 # Override T-SQL tokenizer to handle TIMESTAMP differently 56 # In T-SQL, TIMESTAMP is a synonym for ROWVERSION, but in Fabric we want it to be a datetime type 57 # Also add UTINYINT keyword mapping since T-SQL doesn't have it 58 KEYWORDS = { 59 **TSQL.Tokenizer.KEYWORDS, 60 "TIMESTAMP": TokenType.TIMESTAMP, 61 "UTINYINT": TokenType.UTINYINT, 62 } 63 64 class Generator(TSQL.Generator): 65 # Fabric-specific type mappings - override T-SQL types that aren't supported 66 # Reference: https://learn.microsoft.com/en-us/fabric/data-warehouse/data-types 67 TYPE_MAPPING = { 68 **TSQL.Generator.TYPE_MAPPING, 69 exp.DataType.Type.DATETIME: "DATETIME2", 70 exp.DataType.Type.DECIMAL: "DECIMAL", 71 exp.DataType.Type.IMAGE: "VARBINARY", 72 exp.DataType.Type.INT: "INT", 73 exp.DataType.Type.JSON: "VARCHAR", 74 exp.DataType.Type.MONEY: "DECIMAL", 75 exp.DataType.Type.NCHAR: "CHAR", 76 exp.DataType.Type.NVARCHAR: "VARCHAR", 77 exp.DataType.Type.ROWVERSION: "ROWVERSION", 78 exp.DataType.Type.SMALLDATETIME: "DATETIME2", 79 exp.DataType.Type.SMALLMONEY: "DECIMAL", 80 exp.DataType.Type.TIMESTAMP: "DATETIME2", 81 exp.DataType.Type.TIMESTAMPNTZ: "DATETIME2", 82 exp.DataType.Type.TIMESTAMPTZ: "DATETIME2", 83 exp.DataType.Type.TINYINT: "SMALLINT", 84 exp.DataType.Type.UTINYINT: "SMALLINT", 85 exp.DataType.Type.UUID: "VARBINARY(MAX)", 86 exp.DataType.Type.XML: "VARCHAR", 87 } 88 89 def datatype_sql(self, expression: exp.DataType) -> str: 90 # Check if this is a temporal type that needs precision handling. Fabric limits temporal 91 # types to max 6 digits precision. When no precision is specified, we default to 6 digits. 92 if ( 93 expression.is_type(*exp.DataType.TEMPORAL_TYPES) 94 and expression.this != exp.DataType.Type.DATE 95 ): 96 # Create a new expression with the capped precision 97 expression = _cap_data_type_precision(expression) 98 99 return super().datatype_sql(expression) 100 101 def cast_sql(self, expression: exp.Cast, safe_prefix: str | None = None) -> str: 102 # Cast to DATETIMEOFFSET if inside an AT TIME ZONE expression 103 # https://learn.microsoft.com/en-us/sql/t-sql/data-types/datetimeoffset-transact-sql#microsoft-fabric-support 104 if expression.is_type(exp.DataType.Type.TIMESTAMPTZ): 105 at_time_zone = expression.find_ancestor(exp.AtTimeZone, exp.Select) 106 107 # Return normal cast, if the expression is not in an AT TIME ZONE context 108 if not isinstance(at_time_zone, exp.AtTimeZone): 109 return super().cast_sql(expression, safe_prefix) 110 111 # Get the precision from the original TIMESTAMPTZ cast and cap it to 6 112 capped_data_type = _cap_data_type_precision(expression.to, max_precision=6) 113 precision = capped_data_type.find(exp.DataTypeParam) 114 precision_value = ( 115 precision.this.to_py() if precision and precision.this.is_int else 6 116 ) 117 118 # Do the cast explicitly to bypass sqlglot's default handling 119 datetimeoffset = f"CAST({expression.this} AS DATETIMEOFFSET({precision_value}))" 120 121 return self.sql(datetimeoffset) 122 123 return super().cast_sql(expression, safe_prefix) 124 125 def attimezone_sql(self, expression: exp.AtTimeZone) -> str: 126 # Wrap the AT TIME ZONE expression in a cast to DATETIME2 if it contains a TIMESTAMPTZ 127 ## https://learn.microsoft.com/en-us/sql/t-sql/data-types/datetimeoffset-transact-sql#microsoft-fabric-support 128 timestamptz_cast = expression.find(exp.Cast) 129 if timestamptz_cast and timestamptz_cast.to.is_type(exp.DataType.Type.TIMESTAMPTZ): 130 # Get the precision from the original TIMESTAMPTZ cast and cap it to 6 131 data_type = timestamptz_cast.to 132 capped_data_type = _cap_data_type_precision(data_type, max_precision=6) 133 precision_param = capped_data_type.find(exp.DataTypeParam) 134 precision = precision_param.this.to_py() if precision_param else 6 135 136 # Generate the AT TIME ZONE expression (which will handle the inner cast conversion) 137 at_time_zone_sql = super().attimezone_sql(expression) 138 139 # Wrap it in an outer cast to DATETIME2 140 return f"CAST({at_time_zone_sql} AS DATETIME2({precision}))" 141 142 return super().attimezone_sql(expression) 143 144 def unixtotime_sql(self, expression: exp.UnixToTime) -> str: 145 scale = expression.args.get("scale") 146 timestamp = expression.this 147 148 if scale not in (None, exp.UnixToTime.SECONDS): 149 self.unsupported(f"UnixToTime scale {scale} is not supported by Fabric") 150 return "" 151 152 # Convert unix timestamp (seconds) to microseconds and round to avoid decimals 153 microseconds = timestamp * exp.Literal.number("1e6") 154 rounded = exp.func("round", microseconds, 0) 155 rounded_ms_as_bigint = exp.cast(rounded, exp.DataType.Type.BIGINT) 156 157 # Create the base datetime as '1970-01-01' cast to DATETIME2(6) 158 epoch_start = exp.cast("'1970-01-01'", "datetime2(6)", dialect="fabric") 159 160 dateadd = exp.DateAdd( 161 this=epoch_start, 162 expression=rounded_ms_as_bigint, 163 unit=exp.Literal.string("MICROSECONDS"), 164 ) 165 return self.sql(dateadd)
Microsoft Fabric Data Warehouse dialect that inherits from T-SQL.
Microsoft Fabric is a cloud-based analytics platform that provides a unified data warehouse experience. While it shares much of T-SQL's syntax, it has specific differences and limitations that this dialect addresses.
Key differences from T-SQL:
- Case-sensitive identifiers (unlike T-SQL which is case-insensitive)
- Limited data type support with mappings to supported alternatives
- Temporal types (DATETIME2, DATETIMEOFFSET, TIME) limited to 6 digits precision
- Certain legacy types (MONEY, SMALLMONEY, etc.) are not supported
- Unicode types (NCHAR, NVARCHAR) are mapped to non-unicode equivalents
References:
NORMALIZATION_STRATEGY =
<NormalizationStrategy.CASE_SENSITIVE: 'CASE_SENSITIVE'>
Specifies the strategy according to which identifiers should be normalized.
tokenizer_class =
<class 'Fabric.Tokenizer'>
parser_class =
<class 'sqlglot.parser.Parser'>
generator_class =
<class 'Fabric.Generator'>
TIME_TRIE: Dict =
{'y': {'e': {'a': {'r': {0: True}}}, 0: True, 'y': {'y': {'y': {0: True}}, 0: True}}, 'd': {'a': {'y': {'o': {'f': {'y': {'e': {'a': {'r': {0: True}}}}}}, 0: True}}, 'y': {0: True}, 'w': {0: True}, 'd': {'d': {'d': {0: True}}, 0: True}, 0: True}, 'w': {'e': {'e': {'k': {0: True, 'd': {'a': {'y': {0: True}}}}}}, 'w': {0: True}, 'k': {0: True}}, 'h': {'o': {'u': {'r': {0: True}}}, 'h': {0: True}, 0: True}, 'm': {'i': {'n': {'u': {'t': {'e': {0: True}}}}, 0: True, 'l': {'l': {'i': {'s': {'e': {'c': {'o': {'n': {'d': {0: True}}}}}}}}}}, 's': {0: True}, 'o': {'n': {'t': {'h': {0: True}}}}, 'm': {0: True}, 0: True}, 'n': {0: True}, 's': {'e': {'c': {'o': {'n': {'d': {0: True}}}}}, 's': {0: True}, 0: True}, 'Y': {0: True, 'Y': {'Y': {'Y': {0: True}}, 0: True}}, 'M': {'M': {'M': {'M': {0: True}, 0: True}, 0: True}, 0: True}, 'H': {'H': {0: True}, 0: True}, 'f': {'f': {'f': {'f': {'f': {'f': {0: True}}}}}}}
FORMAT_TRIE: Dict =
{'y': {'e': {'a': {'r': {0: True}}}, 0: True, 'y': {'y': {'y': {0: True}}, 0: True}}, 'd': {'a': {'y': {'o': {'f': {'y': {'e': {'a': {'r': {0: True}}}}}}, 0: True}}, 'y': {0: True}, 'w': {0: True}, 'd': {'d': {'d': {0: True}}, 0: True}, 0: True}, 'w': {'e': {'e': {'k': {0: True, 'd': {'a': {'y': {0: True}}}}}}, 'w': {0: True}, 'k': {0: True}}, 'h': {'o': {'u': {'r': {0: True}}}, 'h': {0: True}, 0: True}, 'm': {'i': {'n': {'u': {'t': {'e': {0: True}}}}, 0: True, 'l': {'l': {'i': {'s': {'e': {'c': {'o': {'n': {'d': {0: True}}}}}}}}}}, 's': {0: True}, 'o': {'n': {'t': {'h': {0: True}}}}, 'm': {0: True}, 0: True}, 'n': {0: True}, 's': {'e': {'c': {'o': {'n': {'d': {0: True}}}}}, 's': {0: True}, 0: True}, 'Y': {0: True, 'Y': {'Y': {'Y': {0: True}}, 0: True}}, 'M': {'M': {'M': {'M': {0: True}, 0: True}, 0: True}, 0: True}, 'H': {'H': {0: True}, 0: True}, 'f': {'f': {'f': {'f': {'f': {'f': {0: True}}}}}}}
INVERSE_TIME_MAPPING: Dict[str, str] =
{'%Y': 'yyyy', '%j': 'dayofyear', '%d': 'dd', '%W': 'wk', '%h': 'hour', '%I': 'hh', '%M': 'mm', '%S': 'ss', '%-S': 's', '%f': 'ffffff', '%w': 'dw', '%m': 'MM', '%-M': 'm', '%y': 'yy', '%B': 'MMMM', '%b': 'MMM', '%-m': 'M', '%A': 'dddd', '%-d': 'd', '%H': 'HH', '%-H': 'H', '%-I': 'h'}
INVERSE_TIME_TRIE: Dict =
{'%': {'Y': {0: True}, 'j': {0: True}, 'd': {0: True}, 'W': {0: True}, 'h': {0: True}, 'I': {0: True}, 'M': {0: True}, 'S': {0: True}, '-': {'S': {0: True}, 'M': {0: True}, 'm': {0: True}, 'd': {0: True}, 'H': {0: True}, 'I': {0: True}}, 'f': {0: True}, 'w': {0: True}, 'm': {0: True}, 'y': {0: True}, 'B': {0: True}, 'b': {0: True}, 'A': {0: True}, 'H': {0: True}}}
54 class Tokenizer(TSQL.Tokenizer): 55 # Override T-SQL tokenizer to handle TIMESTAMP differently 56 # In T-SQL, TIMESTAMP is a synonym for ROWVERSION, but in Fabric we want it to be a datetime type 57 # Also add UTINYINT keyword mapping since T-SQL doesn't have it 58 KEYWORDS = { 59 **TSQL.Tokenizer.KEYWORDS, 60 "TIMESTAMP": TokenType.TIMESTAMP, 61 "UTINYINT": TokenType.UTINYINT, 62 }
KEYWORDS =
{'{%': <TokenType.BLOCK_START: 'BLOCK_START'>, '{%+': <TokenType.BLOCK_START: 'BLOCK_START'>, '{%-': <TokenType.BLOCK_START: 'BLOCK_START'>, '%}': <TokenType.BLOCK_END: 'BLOCK_END'>, '+%}': <TokenType.BLOCK_END: 'BLOCK_END'>, '-%}': <TokenType.BLOCK_END: 'BLOCK_END'>, '{{+': <TokenType.BLOCK_START: 'BLOCK_START'>, '{{-': <TokenType.BLOCK_START: 'BLOCK_START'>, '+}}': <TokenType.BLOCK_END: 'BLOCK_END'>, '-}}': <TokenType.BLOCK_END: 'BLOCK_END'>, '==': <TokenType.EQ: 'EQ'>, '::': <TokenType.DCOLON: 'DCOLON'>, '||': <TokenType.DPIPE: 'DPIPE'>, '|>': <TokenType.PIPE_GT: 'PIPE_GT'>, '>=': <TokenType.GTE: 'GTE'>, '<=': <TokenType.LTE: 'LTE'>, '<>': <TokenType.NEQ: 'NEQ'>, '!=': <TokenType.NEQ: 'NEQ'>, ':=': <TokenType.COLON_EQ: 'COLON_EQ'>, '<=>': <TokenType.NULLSAFE_EQ: 'NULLSAFE_EQ'>, '->': <TokenType.ARROW: 'ARROW'>, '->>': <TokenType.DARROW: 'DARROW'>, '=>': <TokenType.FARROW: 'FARROW'>, '#>': <TokenType.HASH_ARROW: 'HASH_ARROW'>, '#>>': <TokenType.DHASH_ARROW: 'DHASH_ARROW'>, '<->': <TokenType.LR_ARROW: 'LR_ARROW'>, '&&': <TokenType.DAMP: 'DAMP'>, '??': <TokenType.DQMARK: 'DQMARK'>, '~~~': <TokenType.GLOB: 'GLOB'>, '~~': <TokenType.LIKE: 'LIKE'>, '~~*': <TokenType.ILIKE: 'ILIKE'>, '~*': <TokenType.IRLIKE: 'IRLIKE'>, 'ALL': <TokenType.ALL: 'ALL'>, 'ALWAYS': <TokenType.ALWAYS: 'ALWAYS'>, 'AND': <TokenType.AND: 'AND'>, 'ANTI': <TokenType.ANTI: 'ANTI'>, 'ANY': <TokenType.ANY: 'ANY'>, 'ASC': <TokenType.ASC: 'ASC'>, 'AS': <TokenType.ALIAS: 'ALIAS'>, 'ASOF': <TokenType.ASOF: 'ASOF'>, 'AUTOINCREMENT': <TokenType.AUTO_INCREMENT: 'AUTO_INCREMENT'>, 'AUTO_INCREMENT': <TokenType.AUTO_INCREMENT: 'AUTO_INCREMENT'>, 'BEGIN': <TokenType.BEGIN: 'BEGIN'>, 'BETWEEN': <TokenType.BETWEEN: 'BETWEEN'>, 'CACHE': <TokenType.CACHE: 'CACHE'>, 'UNCACHE': <TokenType.UNCACHE: 'UNCACHE'>, 'CASE': <TokenType.CASE: 'CASE'>, 'CHARACTER SET': <TokenType.CHARACTER_SET: 'CHARACTER_SET'>, 'CLUSTER BY': <TokenType.CLUSTER_BY: 'CLUSTER_BY'>, 'COLLATE': <TokenType.COLLATE: 'COLLATE'>, 'COLUMN': <TokenType.COLUMN: 'COLUMN'>, 'COMMIT': <TokenType.COMMIT: 'COMMIT'>, 'CONNECT BY': <TokenType.CONNECT_BY: 'CONNECT_BY'>, 'CONSTRAINT': <TokenType.CONSTRAINT: 'CONSTRAINT'>, 'COPY': <TokenType.COPY: 'COPY'>, 'CREATE': <TokenType.CREATE: 'CREATE'>, 'CROSS': <TokenType.CROSS: 'CROSS'>, 'CUBE': <TokenType.CUBE: 'CUBE'>, 'CURRENT_DATE': <TokenType.CURRENT_DATE: 'CURRENT_DATE'>, 'CURRENT_SCHEMA': <TokenType.CURRENT_SCHEMA: 'CURRENT_SCHEMA'>, 'CURRENT_TIME': <TokenType.CURRENT_TIME: 'CURRENT_TIME'>, 'CURRENT_TIMESTAMP': <TokenType.CURRENT_TIMESTAMP: 'CURRENT_TIMESTAMP'>, 'CURRENT_USER': <TokenType.CURRENT_USER: 'CURRENT_USER'>, 'DATABASE': <TokenType.DATABASE: 'DATABASE'>, 'DEFAULT': <TokenType.DEFAULT: 'DEFAULT'>, 'DELETE': <TokenType.DELETE: 'DELETE'>, 'DESC': <TokenType.DESC: 'DESC'>, 'DESCRIBE': <TokenType.DESCRIBE: 'DESCRIBE'>, 'DISTINCT': <TokenType.DISTINCT: 'DISTINCT'>, 'DISTRIBUTE BY': <TokenType.DISTRIBUTE_BY: 'DISTRIBUTE_BY'>, 'DIV': <TokenType.DIV: 'DIV'>, 'DROP': <TokenType.DROP: 'DROP'>, 'ELSE': <TokenType.ELSE: 'ELSE'>, 'END': <TokenType.END: 'END'>, 'ENUM': <TokenType.ENUM: 'ENUM'>, 'ESCAPE': <TokenType.ESCAPE: 'ESCAPE'>, 'EXCEPT': <TokenType.EXCEPT: 'EXCEPT'>, 'EXECUTE': <TokenType.EXECUTE: 'EXECUTE'>, 'EXISTS': <TokenType.EXISTS: 'EXISTS'>, 'FALSE': <TokenType.FALSE: 'FALSE'>, 'FETCH': <TokenType.FETCH: 'FETCH'>, 'FILTER': <TokenType.FILTER: 'FILTER'>, 'FIRST': <TokenType.FIRST: 'FIRST'>, 'FULL': <TokenType.FULL: 'FULL'>, 'FUNCTION': <TokenType.FUNCTION: 'FUNCTION'>, 'FOR': <TokenType.FOR: 'FOR'>, 'FOREIGN KEY': <TokenType.FOREIGN_KEY: 'FOREIGN_KEY'>, 'FORMAT': <TokenType.FORMAT: 'FORMAT'>, 'FROM': <TokenType.FROM: 'FROM'>, 'GEOGRAPHY': <TokenType.GEOGRAPHY: 'GEOGRAPHY'>, 'GEOMETRY': <TokenType.GEOMETRY: 'GEOMETRY'>, 'GLOB': <TokenType.GLOB: 'GLOB'>, 'GROUP BY': <TokenType.GROUP_BY: 'GROUP_BY'>, 'GROUPING SETS': <TokenType.GROUPING_SETS: 'GROUPING_SETS'>, 'HAVING': <TokenType.HAVING: 'HAVING'>, 'ILIKE': <TokenType.ILIKE: 'ILIKE'>, 'IN': <TokenType.IN: 'IN'>, 'INDEX': <TokenType.INDEX: 'INDEX'>, 'INET': <TokenType.INET: 'INET'>, 'INNER': <TokenType.INNER: 'INNER'>, 'INSERT': <TokenType.INSERT: 'INSERT'>, 'INTERVAL': <TokenType.INTERVAL: 'INTERVAL'>, 'INTERSECT': <TokenType.INTERSECT: 'INTERSECT'>, 'INTO': <TokenType.INTO: 'INTO'>, 'IS': <TokenType.IS: 'IS'>, 'ISNULL': <TokenType.ISNULL: 'ISNULL'>, 'JOIN': <TokenType.JOIN: 'JOIN'>, 'KEEP': <TokenType.KEEP: 'KEEP'>, 'KILL': <TokenType.KILL: 'KILL'>, 'LATERAL': <TokenType.LATERAL: 'LATERAL'>, 'LEFT': <TokenType.LEFT: 'LEFT'>, 'LIKE': <TokenType.LIKE: 'LIKE'>, 'LIMIT': <TokenType.LIMIT: 'LIMIT'>, 'LOAD': <TokenType.LOAD: 'LOAD'>, 'LOCK': <TokenType.LOCK: 'LOCK'>, 'MERGE': <TokenType.MERGE: 'MERGE'>, 'NAMESPACE': <TokenType.NAMESPACE: 'NAMESPACE'>, 'NATURAL': <TokenType.NATURAL: 'NATURAL'>, 'NEXT': <TokenType.NEXT: 'NEXT'>, 'NOT': <TokenType.NOT: 'NOT'>, 'NOTNULL': <TokenType.NOTNULL: 'NOTNULL'>, 'NULL': <TokenType.NULL: 'NULL'>, 'OBJECT': <TokenType.OBJECT: 'OBJECT'>, 'OFFSET': <TokenType.OFFSET: 'OFFSET'>, 'ON': <TokenType.ON: 'ON'>, 'OR': <TokenType.OR: 'OR'>, 'XOR': <TokenType.XOR: 'XOR'>, 'ORDER BY': <TokenType.ORDER_BY: 'ORDER_BY'>, 'ORDINALITY': <TokenType.ORDINALITY: 'ORDINALITY'>, 'OUTER': <TokenType.OUTER: 'OUTER'>, 'OVER': <TokenType.OVER: 'OVER'>, 'OVERLAPS': <TokenType.OVERLAPS: 'OVERLAPS'>, 'OVERWRITE': <TokenType.OVERWRITE: 'OVERWRITE'>, 'PARTITION': <TokenType.PARTITION: 'PARTITION'>, 'PARTITION BY': <TokenType.PARTITION_BY: 'PARTITION_BY'>, 'PARTITIONED BY': <TokenType.PARTITION_BY: 'PARTITION_BY'>, 'PARTITIONED_BY': <TokenType.PARTITION_BY: 'PARTITION_BY'>, 'PERCENT': <TokenType.PERCENT: 'PERCENT'>, 'PIVOT': <TokenType.PIVOT: 'PIVOT'>, 'PRAGMA': <TokenType.PRAGMA: 'PRAGMA'>, 'PRIMARY KEY': <TokenType.PRIMARY_KEY: 'PRIMARY_KEY'>, 'PROCEDURE': <TokenType.PROCEDURE: 'PROCEDURE'>, 'QUALIFY': <TokenType.QUALIFY: 'QUALIFY'>, 'RANGE': <TokenType.RANGE: 'RANGE'>, 'RECURSIVE': <TokenType.RECURSIVE: 'RECURSIVE'>, 'REGEXP': <TokenType.RLIKE: 'RLIKE'>, 'RENAME': <TokenType.RENAME: 'RENAME'>, 'REPLACE': <TokenType.REPLACE: 'REPLACE'>, 'RETURNING': <TokenType.RETURNING: 'RETURNING'>, 'REFERENCES': <TokenType.REFERENCES: 'REFERENCES'>, 'RIGHT': <TokenType.RIGHT: 'RIGHT'>, 'RLIKE': <TokenType.RLIKE: 'RLIKE'>, 'ROLLBACK': <TokenType.ROLLBACK: 'ROLLBACK'>, 'ROLLUP': <TokenType.ROLLUP: 'ROLLUP'>, 'ROW': <TokenType.ROW: 'ROW'>, 'ROWS': <TokenType.ROWS: 'ROWS'>, 'SCHEMA': <TokenType.SCHEMA: 'SCHEMA'>, 'SELECT': <TokenType.SELECT: 'SELECT'>, 'SEMI': <TokenType.SEMI: 'SEMI'>, 'SET': <TokenType.SET: 'SET'>, 'SETTINGS': <TokenType.SETTINGS: 'SETTINGS'>, 'SHOW': <TokenType.SHOW: 'SHOW'>, 'SIMILAR TO': <TokenType.SIMILAR_TO: 'SIMILAR_TO'>, 'SOME': <TokenType.SOME: 'SOME'>, 'SORT BY': <TokenType.SORT_BY: 'SORT_BY'>, 'START WITH': <TokenType.START_WITH: 'START_WITH'>, 'STRAIGHT_JOIN': <TokenType.STRAIGHT_JOIN: 'STRAIGHT_JOIN'>, 'TABLE': <TokenType.TABLE: 'TABLE'>, 'TABLESAMPLE': <TokenType.TABLE_SAMPLE: 'TABLE_SAMPLE'>, 'TEMP': <TokenType.TEMPORARY: 'TEMPORARY'>, 'TEMPORARY': <TokenType.TEMPORARY: 'TEMPORARY'>, 'THEN': <TokenType.THEN: 'THEN'>, 'TRUE': <TokenType.TRUE: 'TRUE'>, 'TRUNCATE': <TokenType.TRUNCATE: 'TRUNCATE'>, 'UNION': <TokenType.UNION: 'UNION'>, 'UNKNOWN': <TokenType.UNKNOWN: 'UNKNOWN'>, 'UNNEST': <TokenType.UNNEST: 'UNNEST'>, 'UNPIVOT': <TokenType.UNPIVOT: 'UNPIVOT'>, 'UPDATE': <TokenType.UPDATE: 'UPDATE'>, 'USE': <TokenType.USE: 'USE'>, 'USING': <TokenType.USING: 'USING'>, 'UUID': <TokenType.UUID: 'UUID'>, 'VALUES': <TokenType.VALUES: 'VALUES'>, 'VIEW': <TokenType.VIEW: 'VIEW'>, 'VOLATILE': <TokenType.VOLATILE: 'VOLATILE'>, 'WHEN': <TokenType.WHEN: 'WHEN'>, 'WHERE': <TokenType.WHERE: 'WHERE'>, 'WINDOW': <TokenType.WINDOW: 'WINDOW'>, 'WITH': <TokenType.WITH: 'WITH'>, 'APPLY': <TokenType.APPLY: 'APPLY'>, 'ARRAY': <TokenType.ARRAY: 'ARRAY'>, 'BIT': <TokenType.BIT: 'BIT'>, 'BOOL': <TokenType.BOOLEAN: 'BOOLEAN'>, 'BOOLEAN': <TokenType.BOOLEAN: 'BOOLEAN'>, 'BYTE': <TokenType.TINYINT: 'TINYINT'>, 'MEDIUMINT': <TokenType.MEDIUMINT: 'MEDIUMINT'>, 'INT1': <TokenType.TINYINT: 'TINYINT'>, 'TINYINT': <TokenType.UTINYINT: 'UTINYINT'>, 'INT16': <TokenType.SMALLINT: 'SMALLINT'>, 'SHORT': <TokenType.SMALLINT: 'SMALLINT'>, 'SMALLINT': <TokenType.SMALLINT: 'SMALLINT'>, 'HUGEINT': <TokenType.INT128: 'INT128'>, 'UHUGEINT': <TokenType.UINT128: 'UINT128'>, 'INT2': <TokenType.SMALLINT: 'SMALLINT'>, 'INTEGER': <TokenType.INT: 'INT'>, 'INT': <TokenType.INT: 'INT'>, 'INT4': <TokenType.INT: 'INT'>, 'INT32': <TokenType.INT: 'INT'>, 'INT64': <TokenType.BIGINT: 'BIGINT'>, 'INT128': <TokenType.INT128: 'INT128'>, 'INT256': <TokenType.INT256: 'INT256'>, 'LONG': <TokenType.BIGINT: 'BIGINT'>, 'BIGINT': <TokenType.BIGINT: 'BIGINT'>, 'INT8': <TokenType.TINYINT: 'TINYINT'>, 'UINT': <TokenType.UINT: 'UINT'>, 'UINT128': <TokenType.UINT128: 'UINT128'>, 'UINT256': <TokenType.UINT256: 'UINT256'>, 'DEC': <TokenType.DECIMAL: 'DECIMAL'>, 'DECIMAL': <TokenType.DECIMAL: 'DECIMAL'>, 'DECIMAL32': <TokenType.DECIMAL32: 'DECIMAL32'>, 'DECIMAL64': <TokenType.DECIMAL64: 'DECIMAL64'>, 'DECIMAL128': <TokenType.DECIMAL128: 'DECIMAL128'>, 'DECIMAL256': <TokenType.DECIMAL256: 'DECIMAL256'>, 'BIGDECIMAL': <TokenType.BIGDECIMAL: 'BIGDECIMAL'>, 'BIGNUMERIC': <TokenType.BIGDECIMAL: 'BIGDECIMAL'>, 'LIST': <TokenType.LIST: 'LIST'>, 'MAP': <TokenType.MAP: 'MAP'>, 'NULLABLE': <TokenType.NULLABLE: 'NULLABLE'>, 'NUMBER': <TokenType.DECIMAL: 'DECIMAL'>, 'NUMERIC': <TokenType.DECIMAL: 'DECIMAL'>, 'FIXED': <TokenType.DECIMAL: 'DECIMAL'>, 'REAL': <TokenType.FLOAT: 'FLOAT'>, 'FLOAT': <TokenType.FLOAT: 'FLOAT'>, 'FLOAT4': <TokenType.FLOAT: 'FLOAT'>, 'FLOAT8': <TokenType.DOUBLE: 'DOUBLE'>, 'DOUBLE': <TokenType.DOUBLE: 'DOUBLE'>, 'DOUBLE PRECISION': <TokenType.DOUBLE: 'DOUBLE'>, 'JSON': <TokenType.JSON: 'JSON'>, 'JSONB': <TokenType.JSONB: 'JSONB'>, 'CHAR': <TokenType.CHAR: 'CHAR'>, 'CHARACTER': <TokenType.CHAR: 'CHAR'>, 'CHAR VARYING': <TokenType.VARCHAR: 'VARCHAR'>, 'CHARACTER VARYING': <TokenType.VARCHAR: 'VARCHAR'>, 'NCHAR': <TokenType.NCHAR: 'NCHAR'>, 'VARCHAR': <TokenType.VARCHAR: 'VARCHAR'>, 'VARCHAR2': <TokenType.VARCHAR: 'VARCHAR'>, 'NVARCHAR': <TokenType.NVARCHAR: 'NVARCHAR'>, 'NVARCHAR2': <TokenType.NVARCHAR: 'NVARCHAR'>, 'BPCHAR': <TokenType.BPCHAR: 'BPCHAR'>, 'STR': <TokenType.TEXT: 'TEXT'>, 'STRING': <TokenType.TEXT: 'TEXT'>, 'TEXT': <TokenType.TEXT: 'TEXT'>, 'LONGTEXT': <TokenType.LONGTEXT: 'LONGTEXT'>, 'MEDIUMTEXT': <TokenType.MEDIUMTEXT: 'MEDIUMTEXT'>, 'TINYTEXT': <TokenType.TINYTEXT: 'TINYTEXT'>, 'CLOB': <TokenType.TEXT: 'TEXT'>, 'LONGVARCHAR': <TokenType.TEXT: 'TEXT'>, 'BINARY': <TokenType.BINARY: 'BINARY'>, 'BLOB': <TokenType.VARBINARY: 'VARBINARY'>, 'LONGBLOB': <TokenType.LONGBLOB: 'LONGBLOB'>, 'MEDIUMBLOB': <TokenType.MEDIUMBLOB: 'MEDIUMBLOB'>, 'TINYBLOB': <TokenType.TINYBLOB: 'TINYBLOB'>, 'BYTEA': <TokenType.VARBINARY: 'VARBINARY'>, 'VARBINARY': <TokenType.VARBINARY: 'VARBINARY'>, 'TIME': <TokenType.TIME: 'TIME'>, 'TIMETZ': <TokenType.TIMETZ: 'TIMETZ'>, 'TIMESTAMP': <TokenType.TIMESTAMP: 'TIMESTAMP'>, 'TIMESTAMPTZ': <TokenType.TIMESTAMPTZ: 'TIMESTAMPTZ'>, 'TIMESTAMPLTZ': <TokenType.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>, 'TIMESTAMP_LTZ': <TokenType.TIMESTAMPLTZ: 'TIMESTAMPLTZ'>, 'TIMESTAMPNTZ': <TokenType.TIMESTAMPNTZ: 'TIMESTAMPNTZ'>, 'TIMESTAMP_NTZ': <TokenType.TIMESTAMPNTZ: 'TIMESTAMPNTZ'>, 'DATE': <TokenType.DATE: 'DATE'>, 'DATETIME': <TokenType.DATETIME: 'DATETIME'>, 'INT4RANGE': <TokenType.INT4RANGE: 'INT4RANGE'>, 'INT4MULTIRANGE': <TokenType.INT4MULTIRANGE: 'INT4MULTIRANGE'>, 'INT8RANGE': <TokenType.INT8RANGE: 'INT8RANGE'>, 'INT8MULTIRANGE': <TokenType.INT8MULTIRANGE: 'INT8MULTIRANGE'>, 'NUMRANGE': <TokenType.NUMRANGE: 'NUMRANGE'>, 'NUMMULTIRANGE': <TokenType.NUMMULTIRANGE: 'NUMMULTIRANGE'>, 'TSRANGE': <TokenType.TSRANGE: 'TSRANGE'>, 'TSMULTIRANGE': <TokenType.TSMULTIRANGE: 'TSMULTIRANGE'>, 'TSTZRANGE': <TokenType.TSTZRANGE: 'TSTZRANGE'>, 'TSTZMULTIRANGE': <TokenType.TSTZMULTIRANGE: 'TSTZMULTIRANGE'>, 'DATERANGE': <TokenType.DATERANGE: 'DATERANGE'>, 'DATEMULTIRANGE': <TokenType.DATEMULTIRANGE: 'DATEMULTIRANGE'>, 'UNIQUE': <TokenType.UNIQUE: 'UNIQUE'>, 'VECTOR': <TokenType.VECTOR: 'VECTOR'>, 'STRUCT': <TokenType.STRUCT: 'STRUCT'>, 'SEQUENCE': <TokenType.SEQUENCE: 'SEQUENCE'>, 'VARIANT': <TokenType.VARIANT: 'VARIANT'>, 'ALTER': <TokenType.ALTER: 'ALTER'>, 'ANALYZE': <TokenType.ANALYZE: 'ANALYZE'>, 'CALL': <TokenType.COMMAND: 'COMMAND'>, 'COMMENT': <TokenType.COMMENT: 'COMMENT'>, 'EXPLAIN': <TokenType.COMMAND: 'COMMAND'>, 'GRANT': <TokenType.GRANT: 'GRANT'>, 'OPTIMIZE': <TokenType.COMMAND: 'COMMAND'>, 'PREPARE': <TokenType.COMMAND: 'COMMAND'>, 'VACUUM': <TokenType.COMMAND: 'COMMAND'>, 'USER-DEFINED': <TokenType.USERDEFINED: 'USERDEFINED'>, 'FOR VERSION': <TokenType.VERSION_SNAPSHOT: 'VERSION_SNAPSHOT'>, 'FOR TIMESTAMP': <TokenType.TIMESTAMP_SNAPSHOT: 'TIMESTAMP_SNAPSHOT'>, 'CLUSTERED INDEX': <TokenType.INDEX: 'INDEX'>, 'DATETIME2': <TokenType.DATETIME2: 'DATETIME2'>, 'DATETIMEOFFSET': <TokenType.TIMESTAMPTZ: 'TIMESTAMPTZ'>, 'DECLARE': <TokenType.DECLARE: 'DECLARE'>, 'EXEC': <TokenType.COMMAND: 'COMMAND'>, 'FOR SYSTEM_TIME': <TokenType.TIMESTAMP_SNAPSHOT: 'TIMESTAMP_SNAPSHOT'>, 'GO': <TokenType.COMMAND: 'COMMAND'>, 'IMAGE': <TokenType.IMAGE: 'IMAGE'>, 'MONEY': <TokenType.MONEY: 'MONEY'>, 'NONCLUSTERED INDEX': <TokenType.INDEX: 'INDEX'>, 'NTEXT': <TokenType.TEXT: 'TEXT'>, 'OPTION': <TokenType.OPTION: 'OPTION'>, 'OUTPUT': <TokenType.RETURNING: 'RETURNING'>, 'PRINT': <TokenType.COMMAND: 'COMMAND'>, 'PROC': <TokenType.PROCEDURE: 'PROCEDURE'>, 'ROWVERSION': <TokenType.ROWVERSION: 'ROWVERSION'>, 'SMALLDATETIME': <TokenType.SMALLDATETIME: 'SMALLDATETIME'>, 'SMALLMONEY': <TokenType.SMALLMONEY: 'SMALLMONEY'>, 'SQL_VARIANT': <TokenType.VARIANT: 'VARIANT'>, 'SYSTEM_USER': <TokenType.CURRENT_USER: 'CURRENT_USER'>, 'TOP': <TokenType.TOP: 'TOP'>, 'UNIQUEIDENTIFIER': <TokenType.UUID: 'UUID'>, 'UPDATE STATISTICS': <TokenType.COMMAND: 'COMMAND'>, 'XML': <TokenType.XML: 'XML'>, 'UTINYINT': <TokenType.UTINYINT: 'UTINYINT'>}
Inherited Members
- sqlglot.tokens.Tokenizer
- Tokenizer
- SINGLE_TOKENS
- BIT_STRINGS
- BYTE_STRINGS
- RAW_STRINGS
- HEREDOC_STRINGS
- UNICODE_STRINGS
- STRING_ESCAPES
- IDENTIFIER_ESCAPES
- HEREDOC_TAG_IS_IDENTIFIER
- HEREDOC_STRING_ALTERNATIVE
- STRING_ESCAPES_ALLOWED_IN_RAW_STRINGS
- NESTED_COMMENTS
- HINT_START
- TOKENS_PRECEDING_HINT
- WHITE_SPACE
- COMMAND_PREFIX_TOKENS
- NUMERIC_LITERALS
- COMMENTS
- dialect
- use_rs_tokenizer
- reset
- tokenize
- tokenize_rs
- size
- sql
- tokens
64 class Generator(TSQL.Generator): 65 # Fabric-specific type mappings - override T-SQL types that aren't supported 66 # Reference: https://learn.microsoft.com/en-us/fabric/data-warehouse/data-types 67 TYPE_MAPPING = { 68 **TSQL.Generator.TYPE_MAPPING, 69 exp.DataType.Type.DATETIME: "DATETIME2", 70 exp.DataType.Type.DECIMAL: "DECIMAL", 71 exp.DataType.Type.IMAGE: "VARBINARY", 72 exp.DataType.Type.INT: "INT", 73 exp.DataType.Type.JSON: "VARCHAR", 74 exp.DataType.Type.MONEY: "DECIMAL", 75 exp.DataType.Type.NCHAR: "CHAR", 76 exp.DataType.Type.NVARCHAR: "VARCHAR", 77 exp.DataType.Type.ROWVERSION: "ROWVERSION", 78 exp.DataType.Type.SMALLDATETIME: "DATETIME2", 79 exp.DataType.Type.SMALLMONEY: "DECIMAL", 80 exp.DataType.Type.TIMESTAMP: "DATETIME2", 81 exp.DataType.Type.TIMESTAMPNTZ: "DATETIME2", 82 exp.DataType.Type.TIMESTAMPTZ: "DATETIME2", 83 exp.DataType.Type.TINYINT: "SMALLINT", 84 exp.DataType.Type.UTINYINT: "SMALLINT", 85 exp.DataType.Type.UUID: "VARBINARY(MAX)", 86 exp.DataType.Type.XML: "VARCHAR", 87 } 88 89 def datatype_sql(self, expression: exp.DataType) -> str: 90 # Check if this is a temporal type that needs precision handling. Fabric limits temporal 91 # types to max 6 digits precision. When no precision is specified, we default to 6 digits. 92 if ( 93 expression.is_type(*exp.DataType.TEMPORAL_TYPES) 94 and expression.this != exp.DataType.Type.DATE 95 ): 96 # Create a new expression with the capped precision 97 expression = _cap_data_type_precision(expression) 98 99 return super().datatype_sql(expression) 100 101 def cast_sql(self, expression: exp.Cast, safe_prefix: str | None = None) -> str: 102 # Cast to DATETIMEOFFSET if inside an AT TIME ZONE expression 103 # https://learn.microsoft.com/en-us/sql/t-sql/data-types/datetimeoffset-transact-sql#microsoft-fabric-support 104 if expression.is_type(exp.DataType.Type.TIMESTAMPTZ): 105 at_time_zone = expression.find_ancestor(exp.AtTimeZone, exp.Select) 106 107 # Return normal cast, if the expression is not in an AT TIME ZONE context 108 if not isinstance(at_time_zone, exp.AtTimeZone): 109 return super().cast_sql(expression, safe_prefix) 110 111 # Get the precision from the original TIMESTAMPTZ cast and cap it to 6 112 capped_data_type = _cap_data_type_precision(expression.to, max_precision=6) 113 precision = capped_data_type.find(exp.DataTypeParam) 114 precision_value = ( 115 precision.this.to_py() if precision and precision.this.is_int else 6 116 ) 117 118 # Do the cast explicitly to bypass sqlglot's default handling 119 datetimeoffset = f"CAST({expression.this} AS DATETIMEOFFSET({precision_value}))" 120 121 return self.sql(datetimeoffset) 122 123 return super().cast_sql(expression, safe_prefix) 124 125 def attimezone_sql(self, expression: exp.AtTimeZone) -> str: 126 # Wrap the AT TIME ZONE expression in a cast to DATETIME2 if it contains a TIMESTAMPTZ 127 ## https://learn.microsoft.com/en-us/sql/t-sql/data-types/datetimeoffset-transact-sql#microsoft-fabric-support 128 timestamptz_cast = expression.find(exp.Cast) 129 if timestamptz_cast and timestamptz_cast.to.is_type(exp.DataType.Type.TIMESTAMPTZ): 130 # Get the precision from the original TIMESTAMPTZ cast and cap it to 6 131 data_type = timestamptz_cast.to 132 capped_data_type = _cap_data_type_precision(data_type, max_precision=6) 133 precision_param = capped_data_type.find(exp.DataTypeParam) 134 precision = precision_param.this.to_py() if precision_param else 6 135 136 # Generate the AT TIME ZONE expression (which will handle the inner cast conversion) 137 at_time_zone_sql = super().attimezone_sql(expression) 138 139 # Wrap it in an outer cast to DATETIME2 140 return f"CAST({at_time_zone_sql} AS DATETIME2({precision}))" 141 142 return super().attimezone_sql(expression) 143 144 def unixtotime_sql(self, expression: exp.UnixToTime) -> str: 145 scale = expression.args.get("scale") 146 timestamp = expression.this 147 148 if scale not in (None, exp.UnixToTime.SECONDS): 149 self.unsupported(f"UnixToTime scale {scale} is not supported by Fabric") 150 return "" 151 152 # Convert unix timestamp (seconds) to microseconds and round to avoid decimals 153 microseconds = timestamp * exp.Literal.number("1e6") 154 rounded = exp.func("round", microseconds, 0) 155 rounded_ms_as_bigint = exp.cast(rounded, exp.DataType.Type.BIGINT) 156 157 # Create the base datetime as '1970-01-01' cast to DATETIME2(6) 158 epoch_start = exp.cast("'1970-01-01'", "datetime2(6)", dialect="fabric") 159 160 dateadd = exp.DateAdd( 161 this=epoch_start, 162 expression=rounded_ms_as_bigint, 163 unit=exp.Literal.string("MICROSECONDS"), 164 ) 165 return self.sql(dateadd)
Generator converts a given syntax tree to the corresponding SQL string.
Arguments:
- pretty: Whether to format the produced SQL string. Default: False.
- identify: Determines when an identifier should be quoted. Possible values are: False (default): Never quote, except in cases where it's mandatory by the dialect. True or 'always': Always quote. 'safe': Only quote identifiers that are case insensitive.
- normalize: Whether to normalize identifiers to lowercase. Default: False.
- pad: The pad size in a formatted string. For example, this affects the indentation of a projection in a query, relative to its nesting level. Default: 2.
- indent: The indentation size in a formatted string. For example, this affects the
indentation of subqueries and filters under a
WHERE
clause. Default: 2. - normalize_functions: How to normalize function names. Possible values are: "upper" or True (default): Convert names to uppercase. "lower": Convert names to lowercase. False: Disables function name normalization.
- unsupported_level: Determines the generator's behavior when it encounters unsupported expressions. Default ErrorLevel.WARN.
- max_unsupported: Maximum number of unsupported messages to include in a raised UnsupportedError. This is only relevant if unsupported_level is ErrorLevel.RAISE. Default: 3
- leading_comma: Whether the comma is leading or trailing in select expressions. This is only relevant when generating in pretty mode. Default: False
- max_text_width: The max number of characters in a segment before creating new lines in pretty mode. The default is on the smaller end because the length only represents a segment and not the true line length. Default: 80
- comments: Whether to preserve comments in the output SQL code. Default: True
TYPE_MAPPING =
{<Type.DATETIME2: 'DATETIME2'>: 'DATETIME2', <Type.MEDIUMTEXT: 'MEDIUMTEXT'>: 'TEXT', <Type.LONGTEXT: 'LONGTEXT'>: 'TEXT', <Type.TINYTEXT: 'TINYTEXT'>: 'TEXT', <Type.BLOB: 'BLOB'>: 'VARBINARY', <Type.MEDIUMBLOB: 'MEDIUMBLOB'>: 'BLOB', <Type.LONGBLOB: 'LONGBLOB'>: 'BLOB', <Type.TINYBLOB: 'TINYBLOB'>: 'BLOB', <Type.INET: 'INET'>: 'INET', <Type.ROWVERSION: 'ROWVERSION'>: 'ROWVERSION', <Type.SMALLDATETIME: 'SMALLDATETIME'>: 'DATETIME2', <Type.BOOLEAN: 'BOOLEAN'>: 'BIT', <Type.DECIMAL: 'DECIMAL'>: 'DECIMAL', <Type.DOUBLE: 'DOUBLE'>: 'FLOAT', <Type.INT: 'INT'>: 'INT', <Type.TEXT: 'TEXT'>: 'VARCHAR(MAX)', <Type.TIMESTAMP: 'TIMESTAMP'>: 'DATETIME2', <Type.TIMESTAMPNTZ: 'TIMESTAMPNTZ'>: 'DATETIME2', <Type.TIMESTAMPTZ: 'TIMESTAMPTZ'>: 'DATETIME2', <Type.UTINYINT: 'UTINYINT'>: 'SMALLINT', <Type.VARIANT: 'VARIANT'>: 'SQL_VARIANT', <Type.UUID: 'UUID'>: 'VARBINARY(MAX)', <Type.DATETIME: 'DATETIME'>: 'DATETIME2', <Type.IMAGE: 'IMAGE'>: 'VARBINARY', <Type.JSON: 'JSON'>: 'VARCHAR', <Type.MONEY: 'MONEY'>: 'DECIMAL', <Type.NCHAR: 'NCHAR'>: 'CHAR', <Type.NVARCHAR: 'NVARCHAR'>: 'VARCHAR', <Type.SMALLMONEY: 'SMALLMONEY'>: 'DECIMAL', <Type.TINYINT: 'TINYINT'>: 'SMALLINT', <Type.XML: 'XML'>: 'VARCHAR'}
89 def datatype_sql(self, expression: exp.DataType) -> str: 90 # Check if this is a temporal type that needs precision handling. Fabric limits temporal 91 # types to max 6 digits precision. When no precision is specified, we default to 6 digits. 92 if ( 93 expression.is_type(*exp.DataType.TEMPORAL_TYPES) 94 and expression.this != exp.DataType.Type.DATE 95 ): 96 # Create a new expression with the capped precision 97 expression = _cap_data_type_precision(expression) 98 99 return super().datatype_sql(expression)
101 def cast_sql(self, expression: exp.Cast, safe_prefix: str | None = None) -> str: 102 # Cast to DATETIMEOFFSET if inside an AT TIME ZONE expression 103 # https://learn.microsoft.com/en-us/sql/t-sql/data-types/datetimeoffset-transact-sql#microsoft-fabric-support 104 if expression.is_type(exp.DataType.Type.TIMESTAMPTZ): 105 at_time_zone = expression.find_ancestor(exp.AtTimeZone, exp.Select) 106 107 # Return normal cast, if the expression is not in an AT TIME ZONE context 108 if not isinstance(at_time_zone, exp.AtTimeZone): 109 return super().cast_sql(expression, safe_prefix) 110 111 # Get the precision from the original TIMESTAMPTZ cast and cap it to 6 112 capped_data_type = _cap_data_type_precision(expression.to, max_precision=6) 113 precision = capped_data_type.find(exp.DataTypeParam) 114 precision_value = ( 115 precision.this.to_py() if precision and precision.this.is_int else 6 116 ) 117 118 # Do the cast explicitly to bypass sqlglot's default handling 119 datetimeoffset = f"CAST({expression.this} AS DATETIMEOFFSET({precision_value}))" 120 121 return self.sql(datetimeoffset) 122 123 return super().cast_sql(expression, safe_prefix)
125 def attimezone_sql(self, expression: exp.AtTimeZone) -> str: 126 # Wrap the AT TIME ZONE expression in a cast to DATETIME2 if it contains a TIMESTAMPTZ 127 ## https://learn.microsoft.com/en-us/sql/t-sql/data-types/datetimeoffset-transact-sql#microsoft-fabric-support 128 timestamptz_cast = expression.find(exp.Cast) 129 if timestamptz_cast and timestamptz_cast.to.is_type(exp.DataType.Type.TIMESTAMPTZ): 130 # Get the precision from the original TIMESTAMPTZ cast and cap it to 6 131 data_type = timestamptz_cast.to 132 capped_data_type = _cap_data_type_precision(data_type, max_precision=6) 133 precision_param = capped_data_type.find(exp.DataTypeParam) 134 precision = precision_param.this.to_py() if precision_param else 6 135 136 # Generate the AT TIME ZONE expression (which will handle the inner cast conversion) 137 at_time_zone_sql = super().attimezone_sql(expression) 138 139 # Wrap it in an outer cast to DATETIME2 140 return f"CAST({at_time_zone_sql} AS DATETIME2({precision}))" 141 142 return super().attimezone_sql(expression)
144 def unixtotime_sql(self, expression: exp.UnixToTime) -> str: 145 scale = expression.args.get("scale") 146 timestamp = expression.this 147 148 if scale not in (None, exp.UnixToTime.SECONDS): 149 self.unsupported(f"UnixToTime scale {scale} is not supported by Fabric") 150 return "" 151 152 # Convert unix timestamp (seconds) to microseconds and round to avoid decimals 153 microseconds = timestamp * exp.Literal.number("1e6") 154 rounded = exp.func("round", microseconds, 0) 155 rounded_ms_as_bigint = exp.cast(rounded, exp.DataType.Type.BIGINT) 156 157 # Create the base datetime as '1970-01-01' cast to DATETIME2(6) 158 epoch_start = exp.cast("'1970-01-01'", "datetime2(6)", dialect="fabric") 159 160 dateadd = exp.DateAdd( 161 this=epoch_start, 162 expression=rounded_ms_as_bigint, 163 unit=exp.Literal.string("MICROSECONDS"), 164 ) 165 return self.sql(dateadd)
AFTER_HAVING_MODIFIER_TRANSFORMS =
{'windows': <function Generator.<lambda>>, 'qualify': <function Generator.<lambda>>}
Inherited Members
- sqlglot.generator.Generator
- Generator
- IGNORE_NULLS_IN_FUNC
- LOCKING_READS_SUPPORTED
- WRAP_DERIVED_VALUES
- CREATE_FUNCTION_RETURN_AS
- MATCHED_BY_SOURCE
- SINGLE_STRING_INTERVAL
- INTERVAL_ALLOWS_PLURAL_FORM
- LIMIT_ONLY_LITERALS
- RENAME_TABLE_WITH_DB
- GROUPINGS_SEP
- INDEX_ON
- JOIN_HINTS
- TABLE_HINTS
- QUERY_HINT_SEP
- IS_BOOL_ALLOWED
- DUPLICATE_KEY_UPDATE_WITH_SET
- EXTRACT_ALLOWS_QUOTES
- TZ_TO_WITH_TIME_ZONE
- VALUES_AS_TABLE
- UNNEST_WITH_ORDINALITY
- AGGREGATE_FILTER_SUPPORTED
- SEMI_ANTI_JOIN_WITH_SIDE
- SUPPORTS_TABLE_COPY
- TABLESAMPLE_REQUIRES_PARENS
- TABLESAMPLE_SIZE_IS_ROWS
- TABLESAMPLE_KEYWORDS
- TABLESAMPLE_WITH_METHOD
- COLLATE_IS_FUNC
- DATA_TYPE_SPECIFIERS_ALLOWED
- LAST_DAY_SUPPORTS_DATE_PART
- SUPPORTS_TABLE_ALIAS_COLUMNS
- UNPIVOT_ALIASES_ARE_IDENTIFIERS
- JSON_KEY_VALUE_PAIR_SEP
- INSERT_OVERWRITE
- SUPPORTS_UNLOGGED_TABLES
- SUPPORTS_CREATE_TABLE_LIKE
- LIKE_PROPERTY_INSIDE_SCHEMA
- MULTI_ARG_DISTINCT
- JSON_TYPE_REQUIRED_FOR_EXTRACTION
- JSON_PATH_SINGLE_QUOTE_ESCAPE
- CAN_IMPLEMENT_ARRAY_ANY
- SUPPORTS_WINDOW_EXCLUDE
- COPY_PARAMS_ARE_WRAPPED
- COPY_HAS_INTO_KEYWORD
- STAR_EXCEPT
- HEX_FUNC
- WITH_PROPERTIES_PREFIX
- QUOTE_JSON_PATH
- PAD_FILL_PATTERN_IS_REQUIRED
- SUPPORTS_EXPLODING_PROJECTIONS
- ARRAY_CONCAT_IS_VAR_LEN
- SUPPORTS_CONVERT_TIMEZONE
- SUPPORTS_MEDIAN
- SUPPORTS_UNIX_SECONDS
- NORMALIZE_EXTRACT_DATE_PARTS
- ARRAY_SIZE_NAME
- ARRAY_SIZE_DIM_REQUIRED
- SUPPORTS_BETWEEN_FLAGS
- TIME_PART_SINGULARS
- TOKEN_MAPPING
- STRUCT_DELIMITER
- PARAMETER_TOKEN
- NAMED_PLACEHOLDER_TOKEN
- EXPRESSION_PRECEDES_PROPERTIES_CREATABLES
- RESERVED_KEYWORDS
- WITH_SEPARATED_COMMENTS
- EXCLUDE_COMMENTS
- UNWRAPPED_INTERVAL_VALUES
- PARAMETERIZABLE_TEXT_TYPES
- RESPECT_IGNORE_NULLS_UNSUPPORTED_EXPRESSIONS
- SENTINEL_LINE_BREAK
- pretty
- identify
- normalize
- pad
- unsupported_level
- max_unsupported
- leading_comma
- max_text_width
- comments
- dialect
- normalize_functions
- unsupported_messages
- generate
- preprocess
- unsupported
- sep
- seg
- sanitize_comment
- maybe_comment
- wrap
- no_identify
- normalize_func
- indent
- sql
- uncache_sql
- cache_sql
- characterset_sql
- column_parts
- column_sql
- columnposition_sql
- columnconstraint_sql
- computedcolumnconstraint_sql
- autoincrementcolumnconstraint_sql
- compresscolumnconstraint_sql
- generatedasidentitycolumnconstraint_sql
- generatedasrowcolumnconstraint_sql
- periodforsystemtimeconstraint_sql
- notnullcolumnconstraint_sql
- primarykeycolumnconstraint_sql
- uniquecolumnconstraint_sql
- sequenceproperties_sql
- clone_sql
- describe_sql
- heredoc_sql
- prepend_ctes
- with_sql
- cte_sql
- tablealias_sql
- bitstring_sql
- hexstring_sql
- bytestring_sql
- unicodestring_sql
- rawstring_sql
- datatypeparam_sql
- directory_sql
- delete_sql
- set_operation
- set_operations
- fetch_sql
- limitoptions_sql
- filter_sql
- hint_sql
- indexparameters_sql
- index_sql
- hex_sql
- lowerhex_sql
- inputoutputformat_sql
- national_sql
- properties_sql
- root_properties
- properties
- with_properties
- locate_properties
- property_name
- property_sql
- likeproperty_sql
- fallbackproperty_sql
- journalproperty_sql
- freespaceproperty_sql
- checksumproperty_sql
- mergeblockratioproperty_sql
- datablocksizeproperty_sql
- blockcompressionproperty_sql
- isolatedloadingproperty_sql
- partitionboundspec_sql
- partitionedofproperty_sql
- lockingproperty_sql
- withdataproperty_sql
- withsystemversioningproperty_sql
- insert_sql
- introducer_sql
- kill_sql
- pseudotype_sql
- objectidentifier_sql
- onconflict_sql
- rowformatdelimitedproperty_sql
- withtablehint_sql
- indextablehint_sql
- historicaldata_sql
- table_parts
- table_sql
- tablefromrows_sql
- tablesample_sql
- pivot_sql
- tuple_sql
- update_sql
- values_sql
- var_sql
- from_sql
- groupingsets_sql
- rollup_sql
- cube_sql
- group_sql
- having_sql
- connect_sql
- prior_sql
- join_sql
- lambda_sql
- lateral_sql
- limit_sql
- set_sql
- pragma_sql
- lock_sql
- literal_sql
- escape_str
- loaddata_sql
- null_sql
- order_sql
- withfill_sql
- cluster_sql
- distribute_sql
- sort_sql
- ordered_sql
- matchrecognizemeasure_sql
- matchrecognize_sql
- query_modifiers
- for_modifiers
- offset_limit_modifiers
- after_limit_modifiers
- schema_sql
- schema_columns_sql
- star_sql
- parameter_sql
- sessionparameter_sql
- placeholder_sql
- subquery_sql
- qualify_sql
- unnest_sql
- prewhere_sql
- where_sql
- window_sql
- partition_by_sql
- windowspec_sql
- withingroup_sql
- between_sql
- bracket_offset_expressions
- bracket_sql
- all_sql
- any_sql
- exists_sql
- case_sql
- nextvaluefor_sql
- extract_sql
- trim_sql
- convert_concat_args
- concat_sql
- concatws_sql
- check_sql
- foreignkey_sql
- primarykey_sql
- if_sql
- matchagainst_sql
- jsonkeyvalue_sql
- jsonpath_sql
- json_path_part
- formatjson_sql
- formatphrase_sql
- jsonobject_sql
- jsonobjectagg_sql
- jsonarray_sql
- jsonarrayagg_sql
- jsoncolumndef_sql
- jsonschema_sql
- jsontable_sql
- openjsoncolumndef_sql
- openjson_sql
- in_sql
- in_unnest_op
- interval_sql
- return_sql
- reference_sql
- anonymous_sql
- paren_sql
- neg_sql
- not_sql
- alias_sql
- pivotalias_sql
- aliases_sql
- atindex_sql
- fromtimezone_sql
- add_sql
- and_sql
- or_sql
- xor_sql
- connector_sql
- bitwiseand_sql
- bitwiseleftshift_sql
- bitwisenot_sql
- bitwiseor_sql
- bitwiserightshift_sql
- bitwisexor_sql
- currentdate_sql
- collate_sql
- command_sql
- comment_sql
- mergetreettlaction_sql
- mergetreettl_sql
- altercolumn_sql
- alterindex_sql
- alterdiststyle_sql
- altersortkey_sql
- alterrename_sql
- renamecolumn_sql
- alterset_sql
- add_column_sql
- droppartition_sql
- addconstraint_sql
- addpartition_sql
- distinct_sql
- ignorenulls_sql
- respectnulls_sql
- havingmax_sql
- intdiv_sql
- div_sql
- safedivide_sql
- overlaps_sql
- distance_sql
- dot_sql
- eq_sql
- propertyeq_sql
- escape_sql
- glob_sql
- gt_sql
- gte_sql
- ilike_sql
- ilikeany_sql
- like_sql
- likeany_sql
- similarto_sql
- lt_sql
- lte_sql
- mod_sql
- mul_sql
- neq_sql
- nullsafeeq_sql
- nullsafeneq_sql
- slice_sql
- sub_sql
- trycast_sql
- jsoncast_sql
- try_sql
- log_sql
- use_sql
- binary
- ceil_floor
- function_fallback_sql
- func
- format_args
- too_wide
- format_time
- expressions
- op_expressions
- naked_property
- tag_sql
- token_sql
- userdefinedfunction_sql
- joinhint_sql
- kwarg_sql
- when_sql
- whens_sql
- merge_sql
- tochar_sql
- tonumber_sql
- dictproperty_sql
- dictrange_sql
- dictsubproperty_sql
- duplicatekeyproperty_sql
- uniquekeyproperty_sql
- distributedbyproperty_sql
- oncluster_sql
- clusteredbyproperty_sql
- anyvalue_sql
- querytransform_sql
- indexconstraintoption_sql
- checkcolumnconstraint_sql
- indexcolumnconstraint_sql
- nvl2_sql
- comprehension_sql
- columnprefix_sql
- opclass_sql
- predict_sql
- forin_sql
- refresh_sql
- toarray_sql
- tsordstotime_sql
- tsordstotimestamp_sql
- tsordstodatetime_sql
- tsordstodate_sql
- unixdate_sql
- lastday_sql
- dateadd_sql
- arrayany_sql
- struct_sql
- partitionrange_sql
- truncatetable_sql
- copyparameter_sql
- credentials_sql
- copy_sql
- semicolon_sql
- datadeletionproperty_sql
- maskingpolicycolumnconstraint_sql
- gapfill_sql
- scoperesolution_sql
- parsejson_sql
- rand_sql
- changes_sql
- pad_sql
- summarize_sql
- explodinggenerateseries_sql
- arrayconcat_sql
- converttimezone_sql
- json_sql
- jsonvalue_sql
- conditionalinsert_sql
- multitableinserts_sql
- oncondition_sql
- jsonextractquote_sql
- jsonexists_sql
- arrayagg_sql
- apply_sql
- grant_sql
- grantprivilege_sql
- grantprincipal_sql
- columns_sql
- overlay_sql
- todouble_sql
- string_sql
- median_sql
- overflowtruncatebehavior_sql
- unixseconds_sql
- arraysize_sql
- attach_sql
- detach_sql
- attachoption_sql
- featuresattime_sql
- watermarkcolumnconstraint_sql
- encodeproperty_sql
- includeproperty_sql
- xmlelement_sql
- xmlkeyvalueoption_sql
- partitionbyrangeproperty_sql
- partitionbyrangepropertydynamic_sql
- unpivotcolumns_sql
- analyzesample_sql
- analyzestatistics_sql
- analyzehistogram_sql
- analyzedelete_sql
- analyzelistchainedrows_sql
- analyzevalidate_sql
- analyze_sql
- xmltable_sql
- xmlnamespace_sql
- export_sql
- declare_sql
- declareitem_sql
- recursivewithsearch_sql
- parameterizedagg_sql
- anonymousaggfunc_sql
- combinedaggfunc_sql
- combinedparameterizedagg_sql
- show_sql
- get_put_sql
- translatecharacters_sql
- decodecase_sql
- semanticview_sql
- sqlglot.dialects.tsql.TSQL.Generator
- LIMIT_IS_TOP
- QUERY_HINTS
- RETURNING_END
- NVL2_SUPPORTED
- ALTER_TABLE_INCLUDE_COLUMN_KEYWORD
- LIMIT_FETCH
- COMPUTED_COLUMN_WITH_TYPE
- CTE_RECURSIVE_KEYWORD_REQUIRED
- ENSURE_BOOLS
- NULL_ORDERING_SUPPORTED
- SUPPORTS_SINGLE_ARG_CONCAT
- TABLESAMPLE_SEED_KEYWORD
- SUPPORTS_SELECT_INTO
- JSON_PATH_BRACKETED_KEY_SUPPORTED
- SUPPORTS_TO_NUMBER
- SET_OP_MODIFIERS
- COPY_PARAMS_EQ_REQUIRED
- PARSE_JSON_NAME
- EXCEPT_INTERSECT_SUPPORT_ALL_CLAUSE
- ALTER_SET_WRAPPED
- ALTER_SET_TYPE
- EXPRESSIONS_WITHOUT_NESTED_CTES
- SUPPORTED_JSON_PATH_PARTS
- TRANSFORMS
- PROPERTIES_LOCATION
- scope_resolution
- select_sql
- convert_sql
- queryoption_sql
- lateral_op
- splitpart_sql
- timefromparts_sql
- timestampfromparts_sql
- setitem_sql
- boolean_sql
- is_sql
- createable_sql
- create_sql
- into_sql
- count_sql
- offset_sql
- version_sql
- returnsproperty_sql
- returning_sql
- transaction_sql
- commit_sql
- rollback_sql
- identifier_sql
- constraint_sql
- length_sql
- right_sql
- left_sql
- partition_sql
- alter_sql
- drop_sql
- options_modifier
- dpipe_sql
- isascii_sql
- columndef_sql
- coalesce_sql